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Abstract

To avoid potential misapplication of effective thermal conductivity models, materials that may be described as �por-
ous� should be divided into two classes; �internal porosity� materials which have bubbles/pores suspended within a con-
tinuous condensed phase (e.g. sponges, foams, honeycombs), and �external porosity� materials which include granular/
particulate materials. It is proposed that the effective thermal conductivity region bounded by the Hashin–Shtrikman

bounds may be divided into internal porosity and external porosity regions by the Effective Medium Theory (EMT)

equation. The use of the Hashin–Shtrikman and EMT equations as porosity bounds was supported by experimental

data from the literature.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The prediction of the thermal conductivity of hetero-

geneous or composite materials comprises a significant

portion of the heat transfer literature, and a significant

number of effective thermal conductivity models have

been proposed [1–4]. Many of the models that have been

proposed are either purely empirical or are theoretically

based but highly specific to a given material. Some the-

oretically based models may have wider applicability,

but their convenience of use is limited by the inclusion

of parameters whose values must be determined empiri-

cally. Several researchers have proposed generic models
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by deriving a set of equations, usually based on a con-

ceptual �parent� model that is modified to account for
variations in composition and structure, although some

of these still include empirical parameters [5–8]. How-

ever, even a cursory glance of the literature will reveal

that new models continue to appear—which suggests

that, to-date, no single model or prediction procedure

has been found with universal applicability.

Much of the effective thermal conductivity literature

is concerned with porous materials; however, the term

�porous� itself may be the cause of some confusion. In
some situations it refers to granular or particulate mate-

rials, in which the void volume may be occupied by

either liquid or gaseous components; alternatively, it

may refer to a material having a continuous solid matrix

that contains pores/bubbles, which may be isolated or

interconnected. Problems may arise when a model that

has been shown to work well for one type of porous

material is assumed to be applicable to another type,
ed.
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Nomenclature

A,B,C,D constants in Eq. (10)

b magnitude of temperature gradient (K m�1)

k thermal conductivity (W m�1 K�1)

n number of small spheres

p probability function (Eq. (18))

q heat flux (W m�2)

r radial coordinate

R sphere/cylinder radius (m)

T temperature (K)

v volume fraction of material component

V volume (m3)

w number of components

z axial coordinate

Greek symbols

e porosity

h latitudinal spherical polar coordinate

/ longitudinal spherical polar coordinate

Subscripts

1 component 1

2 component 2

cont continuous phase

disp dispersed (discontinuous) phase

e effective

i component i

m continuous medium

s sphere

solid solid phase
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Fig. 1. Predictions of Francl�s model Eq. (1) with effective
thermal conductivity data for loose sand, ksolid/kair = 166 [10].
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simply because both materials have been described as

�porous�. For example, Francl�s model (Eq. (1)) has been
shown to be effective for a certain porous material [9];

ke ¼ ksolidð1� eÞ ð1Þ

however, if it were to be applied to a granular material

such as sand, the thermal conductivity predicted by

Eq. (1) would be erroneous by several orders of magni-

tude (Fig. 1, thermal conductivity data from [10]).

In this paper, it is proposed that this problem may be

clarified by distinguishing �internal porosity� from �exter-
nal porosity�, and that thermal conductivity bounds
which depend only on the thermal conductivities and

volume fractions of the material�s components may be
defined for each class of porous material. The analysis

is limited to steady-state conduction heat transfer, and

to materials that may be considered isotropic on the

macroscopic scale.

Although the focus of this paper is on porous mate-

rials, the analysis could be applied to any isotropic, two-
component, heterogeneous material, since the models

involved do not require the specification of components

as being either solid or fluid.
2. Optimal heat conduction pathways

Consider the theoretical material depicted in Fig. 2a

and b (simulated using the finite element software pack-

age FlexPDETM). In both cases, one component is dis-

persed as circular inclusions within a continuous

medium of the other component. Both are subjected to

a steady-state temperature gradient from the top to the

bottom of the figures. However, the thermal conductiv-

ity of the circles (i.e. the dispersed phase) of the material

in Fig. 2a is less than the thermal conductivity of the sur-

rounding material (continuous phase), while the oppo-

site is true for the material in Fig. 2b. The arrows

represent heat flux vectors q, where:

q ¼ �kgradðTÞ ð2Þ
Based on the magnitudes and directions of the heat flux

vectors shown in Fig. 2a and b, the following significant

inferences can be drawn:

• the optimal heat conduction pathway is dependent
on whether the thermal conductivity of the dispersed

phase is higher or lower than the thermal conductiv-

ity of the continuous phase

• when kcont > kdisp the heat flow essentially avoids the

dispersed phase

• when kcont < kdisp the heat flow involves the dispersed

phase as much as possible.

Although represented simplistically in two dimen-

sions in Fig. 2a and b, a similar set of conclusions may



Fig. 2. Heat flux vectors for a dispersion of spheres in a continuous medium (a) with kcont > kdisp; (b) with kcont < kdisp.
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be drawn intuitively for most isotropic, porous struc-

tures. For materials in which the lower conductivity

component is dispersed in pores/bubbles within a

higher-conductivity continuous medium (such as a foam

or a sponge), the optimal heat transfer pathway is repre-

sented by the scenario depicted in Fig. 2a (i.e. heat flow

avoiding air bubbles). Conversely, for particulate mate-

rials surrounded by a lower conductivity phase, the opti-

mal heat transfer pathway is represented by the scenario

depicted in Fig. 2b (i.e. heat flow through particles

where possible). Hence, due to the different optimal con-

duction pathways, a foam and a particulate material will

not necessarily have the same effective thermal conduc-

tivities simply because they may have identical void frac-

tions and component thermal conductivities. This

distinction between porous materials according to the

optimal heat transfer pathways, as described above, is

seldom made in the effective thermal conductivity

literature.

It is therefore convenient to introduce terms to dis-

tinguish between these two basic types of porous

materials. Particulate-type materials in which air (for

instance) comprises a continuous phase will be re-

ferred to as �external porosity� materials, and materials
such as foams, sponges, and honeycomb-structures in

which air (for instance) is dispersed within a continu-

ous condensed phase (i.e. solid or solid/immobilised-

liquid) will be referred to as �internal porosity�
materials.
3. Thermal conductivity bounds for internal and external

porosity materials

The Series and Parallel models serve as lower and

upper bounds respectively for the effective conductivity
of heterogeneous materials, provided conduction is the

only mechanism of heat transfer involved (sometimes

referred to as the Wiener bounds) [11]:

Series model: ke ¼
1

ð1� v2Þ=k1 þ v2=k2
ð3Þ

Parallel model: ke ¼ ð1� v2Þk1 þ v2k2 ð4Þ

Hashin and Shtrikman [12] derived effective conductivity

bounds that were the best (i.e. narrowest) possible bounds

for macroscopically homogeneous, isotropic, two-phase

materials that could be derived from the components�
volume fractions and conductivities. The Hashin–

Shtrikman bounds always lie within the Series–Parallel

bounds, regardless of the components� volume fractions
or thermal conductivities.

Although arrived at by different lines of reasoning,

the equations presented by Hashin and Shtrikman as

conductivity bounds were mathematically equivalent to

the two forms of the well-known Maxwell–Eucken

model [12].

Maxwell–Eucken 1:

ke ¼ k1
2k1 þ k2 � 2ðk1 � k2Þv2
2k1 þ k2 þ ðk1 � k2Þv2

ð5Þ

Maxwell–Eucken 2:

ke ¼ k2
2k2 þ k1 � 2ðk2 � k1Þð1� v2Þ
2k2 þ k1 þ ðk2 � k1Þð1� v2Þ

ð6Þ

This apparent coincidence can be explained intui-

tively by returning to the optimal-heat-conduction-

pathway analysis described above. An assumption of

Maxwell�s model was that the inclusions of the dispersed



 

Fig. 3. Schematic diagram of a material made up of a random

dispersion of two components.
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Fig. 4. Single sphere of conductivity ks contained within a

continuous medium of conductivity km.
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phase (whether particles or bubbles) did not come into

contact with neighbouring inclusions [13]. This meant

that the dispersed phase could never form continuous

conduction pathways, and hence, from a heat transfer

perspective, Maxwell�s model had a �maximum bias� to-
wards the continuous phase.

Consider the structure depicted in Fig. 3 which repre-

sents a heterogeneous material in which the two compo-

nents are distributed randomly, with neither phase being

necessarily continuous or dispersed. Either component

may form continuous heat conduction pathways,

depending on the relative amounts of the components,

and therefore this structure is �unbiased� towards its
components. The effective conductivity of this type of

structure is modelled well by the Effective Medium The-

ory (EMT) equation [14,15]:

ð1� v2Þ
k1 � ke
k1 þ 2ke

þ v2
k2 � ke
k2 þ 2ke

¼ 0 ð7Þ

which may be rewritten to be explicit for ke:

ke ¼ 1=4
�
ð3v2 � 1Þk2 þ ½3ð1� v2Þ � 1�k1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð3v2 � 1Þk2 þ ð3f1� v2g� 1Þk1�2 þ 8k1k2

q �
ð8Þ

The concept of conduction �bias� towards compo-
nents can also be seen in the derivation of the Max-

well–Eucken and EMT models. Both may be derived

from the solution of Laplace�s equation applied to a sin-
gle sphere of radius R and conductivity ks surrounded by

a continuous medium of conductivity km, and subjected

to a steady-state temperature gradient in the direction of

the z-axis, as depicted in Fig. 4.

If ks5 km, a localised distortion to the spatial

temperature distribution around the sphere will result.
Under steady-state conditions the temperature distribu-

tion within a region of constant thermal conductivity is

governed by Laplace�s Equation, shown below in spher-
ical polar coordinates:

1

r2
o

or
r2
oT
or

� �
þ 1

r2 sin h
o

oh
sin h

oT
oh

� �
þ 1

r2sin2h

o
2T

o/2
¼ 0

ð9Þ

Taking the centre of the sphere as the origin, and assum-

ing symmetry about the z-axis such that T is indepen-

dent of /, a general solution of Eq. (9) is:

T ¼ Aþ B
r
þ Cr cos h þ D

r2
cos h ð10Þ

where A, B, C and D must be determined from the

following boundary conditions:

at r ¼ 0 T s 6¼ 1

at r ¼ R ks
oT s
or

¼ km
oTm
or

and
oT s
oh

¼ oTm
oh

at r � R Tm ¼ bz ¼ br cos h

The constant b (K m�1) is the magnitude of the temper-

ature gradient in the continuous medium. Using the

boundary conditions to substitute for A, B, C and D

in Eq. (10) yields:

T s ¼ b
3km

ks þ km
r cos h ð11Þ

for the temperature distribution within the sphere, and:

Tm ¼ br cos h � bR3
ks � km
ks þ 2km

cos h
r2

ð12Þ

for the external temperature distribution.
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The difference between the Maxwell and EMT mod-

els arises from the different assumptions made in order

to derive expressions for situations involving multiple

inclusions, based on Eq. (12). Maxwell [13] considered

the situation where n small spheres of radius R2 and con-

ductivity k2 were contained within a single larger sphere

R1 with conductivity k1 such that the local distortions to

the temperature distributions around the smaller spheres

did not affect their neighbours. From Eq. (12):

Tm ¼ br cos h � bnR32
k2 � k1
k2 þ 2k1

cos h
r2

ð13Þ

The volume fraction of the small spheres within the

volume of the larger sphere was:

v2 ¼
nR32
R31

ð14Þ

and so Eq. (13) became:

Tm ¼ br cos h � bv2R
3
1

k2 � k1
k2 þ 2k1

cos h
r2

ð15Þ

If the large sphere had been filled with a material having

an effective conductivity ke, Eq. (12) would have

become:

Tm ¼ br cos h � bR31
ke � k1
ke þ 2k1

cos h
r2

ð16Þ

In order for Eqs. (15) and (16) to produce the same

result:
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Fig. 5. Plot of Eqs. (3)–(7) with schematic representa
ke � k1
ke þ 2k1

¼ v2
k2 � k1
k2 þ 2k1

ð17Þ

which, when rearranged, is identical to Eq. (5).

By contrast, the EMT model assumed that for a com-

pletely random distribution of components the effect of

local distortions to the temperature distribution caused

by individual inclusions could be averaged such that

over a sufficiently large volume (V) the temperature dis-

tribution within the material could be approximated by

a material having a uniform temperature distribution

and thermal conductivity ke [16]. This assumption re-

quired that the net effect from the second term on the

right hand side of Eq. (12) must be zero, i.e.:Z
V

ki � ke
ki þ 2ke

� �
pðkiÞdk ¼ 0 ð18Þ

where p(ki)dk is the probability that the component at

an arbitrary location within the heterogeneous material

has a thermal conductivity equal to ki. For a random

distribution of components, this probability is directly

proportional to the volume fraction (vi) of the compo-

nent, hence for w components:

Xw
i¼1

vi
ki � ke
ki þ 2ke

¼ 0 ð19Þ

Eq. (7) is the two-component form of Eq. (19).

Fig. 5 shows plots of relative effective thermal

conductivities (ke/k1) for the Series, Parallel, Maxwell–
0.6 0.8 1

2

EMT

Maxwell: k cont  > k disp

tions of the structure assumed by each model.



Fig. 6. �Internal porosity� region bounded above by Eq. (5) and
below by Eq. (7); �external porosity� region bounded above by
Eq. (7) and below by Eq. (6).
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Eucken and EMT models for a two-component material

with k1/k2 = 20, over the full range of composition. A

schematic of the material structures assumed by each

model is also shown.
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Fig. 7. Experimental thermal conductivity for porous materials plo

kair = 348 [17], (b) dry sand, ksolid/kair = 166 [10], (c) porous rock, kso
External porosity materials were identified above as

those in which the gaseous component forms continuous

conduction pathways, and therefore the effective con-

ductivity of an external porosity material would be

expected to be bounded below by the form of the

Maxwell–Eucken model in which the gaseous compo-

nent is the continuous phase (i.e. the lower Hashin–

Shtrikman bound), and above by EMT model.

Similarly, since internal porosity materials are those in

which the condensed phase forms continuous conduc-

tion pathways, the effective conductivity of an internal

porosity material would be expected to be bounded

above by the form of the Maxwell–Eucken model in

which the condensed phase is continuous (i.e. the upper

Hashin–Shtrikman bound), and below by the EMT

model. Hence the region between the Hashin–Shtrikman

bounds may be divided into an ‘‘internal porosity re-

gion’’ and an ‘‘external porosity region’’, as illustrated

by Fig. 6.
4. Testing the bounds

In order to test the proposed thermal conductivity

bounds, published experimental thermal conductivity

data were plotted in charts similar to Figs. 5 and 6, with
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tted with the proposed �porosity bounds�; (a) dry sand, ksolid/

lid/kair = 348 [18], (d) sandstone, ksolid/kair = 70 [19].
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Fig. 8. Experimental thermal conductivity for porous materials plotted with the proposed �porosity bounds�: (a) porous food gel, ksolid/
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cellular ceramic, ksolid/kair = 81 [22].
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relative thermal conductivity on the ordinate axis, and

porosity on the abscissa axis. Data were chosen that

were measured near to room temperature, to minimise

the possible influence of radiation in the gaseous phase.

Fig. 7a and b shows data for dry, loose sand [10,17]

along with the porosity bounds, while Fig. 7c and d

show similar plots for consolidated sands (sandstone)

[18,19]. Consistent with the discussion above, all these

data for granular-type materials lay within the ‘‘external

porosity region’’, i.e. between the lower Hashin–Shtrik-

man bound and the EMT-model (cf. Fig. 6).

Fig. 8a–d show similar plots for a porous food gel

[20], an aqueous alginate/saponin foam [7], a metallic

foam [21] and a cellular ceramic [22] respectively. Con-

sistent with the discussion above, all these data for

foam-type materials lay within the ‘‘internal porosity re-

gion’’, i.e. between the upper Hashin–Shtrikman bound

and the EMT-model (cf. Fig. 6).
5. Difficulties with identifying continuous and dispersed

phases

In some materials, the identification of continuous

and dispersed phases is self-evident; however, while the
terms �continuous phase� and �dispersed phase� appear
frequently in the effective thermal conductivity litera-

ture, these terms lack clear definitions, and ambiguities

may arise from different interpretations of the words

�continuous� and �dispersed�. Ultimately the material
structure may need to be analysed in terms of its opti-

mum heat transfer pathways in order to avoid potential

confusion.

For example, the relatively low porosities of sand-

stone might suggest that air comprised the dispersed

phase, and it might therefore be expected that sandstone

was an internal porosity material. However, Fig. 7d

shows that the data actually lie in the external porosity

region, which, at face value, would appear to contradict

the discussion so far.

Fig. 9 shows a schematic diagram of a lump of consol-

idated granularmaterial such as sandstone, which ismade

up of discrete particles that have been compacted to form

a larger solid (compare with Fig. 11 of [19]). Because the

particles are packed tightly with smaller particles filling

the interstices between larger particles, each individual

particle is held in place and the overall mechanical prop-

erties are essentially those of a single solid. However,

although the consolidated material does have physical

continuity, Fig. 11 shows that the proportion of the



Fig. 9. Schematic diagram of consolidated granular material

(e.g. sandstone).
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surface of each particle that is in direct contact with neigh-

bouring particles is small, and so while there is sufficient

contact for each particle to be held in a fixed position rel-

ative to its neighbours, the heat conduction is inhibited by

the low proportion of surface area that is in intimate con-

tact with neighbouring particles (i.e. there is significant

internal contact resistance). Hence, although it occupies

only a small proportion of the total space, the gaseous

phase behaves as the �continuous phase� from an effective
thermal conductivity perspective, and the sandstone is

actually an external porosity material. The �continuous
phase� and �dispersed phase�of amaterial should therefore
be defined and identified from a heat transfer perspective

rather than from a physical or mechanical perspective

when its effective thermal conductivity is at issue.
6. Implications of the proposed bounds

If conduction is the only heat transfer mechanism in-

volved, it may reasonably be assumed that the thermal

conductivity of a porous material will lie between the

Wiener bounds; if the material is isotropic on a macro-

scopic scale, the range of possible thermal conductivity

is further reduced by the Hashin–Shtrikman bounds.

Using the bounds proposed above, the range of possible

thermal conductivities may be reduced again based on

whether the material has internal or external porosity.

Fig. 6 shows that the external porosity region is lar-

ger than the internal porosity region, and this is true

for any value of k1/k2. The implication of this observa-

tion is that there is inherently more uncertainty in the

prediction of the thermal conductivities of external
porosity materials than there is for internal porosity

materials, as has been suggested previously [24,25]. This

may be explained by returning to the analysis of heat

conduction pathways. For internal porosity materials,

the majority of the heat flow is through the condensed

phase even if this phase comprises significantly less than

10% of the material�s volume [21,26], and so it is not
influenced greatly by the extent of thermal contact be-

tween the pores. However, for external porosity materi-

als the heat transfer pathways are strongly dependent on

the extent/quality of thermal contact between neigh-

bouring particles. Since thermal contact is affected by

the shape and distribution of the inclusions, there is a

much greater level of randomness involved, and hence

much more uncertainty in predicting the thermal

conductivity.

Since the extent/quality of thermal contact between

particles is so influential, models that are functions only

of the components� volume fractions and conductivities
will have limited applicability, and more versatile models

will require some measure of thermal contact [27]. How-

ever, other than for regular arrangements of regularly

shaped particles, it has proven difficult to predict the value

of this variable. Kunii and Smith [28] suggested that the

extent of thermal contact between neighbouring particles

was a material-specific property, and Nozad et al. [29]

found that it was difficult to determine its value other than

by empirical means, which explains why most generic

models include at least one empirical parameter.

However, Figs. 5 and 6 show that for low concentra-

tions of the dispersed phase (i.e. vdisp < 0.2), the predic-

tions of the Maxwell and EMT models are almost

identical, which suggests that the interactions between

individual inclusions of the dispersed phase are negligi-

ble below this threshold. Hence, the thermal conductiv-

ity of this type of material may be predicted accurately

based on the components� volume fractions and conduc-
tivities alone, regardless of whether the dispersed phase

has a higher or lower conductivity than the continuous

phase, and either of the EMT or Maxwell models would

provide accurate predictions.
7. Conclusions

• Isotropic porous materials may be divided into two
classes: internal porosity materials are materials in

which the optimal heat transfer pathway is through

the continuous phase, while external porosity

materials are those in which the optimal heat

conduction pathway is through the dispersed

phase.

• A model that accurately predicts the effective thermal
conductivity of internal porosity materials will not

necessarily be applicable to external porosity materi-

als or vice versa.
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• It was proposed that the effective thermal conductiv-
ity of internal porosity materials is bounded above by

the Maxwell–Eucken equation with the lower-con-

ductivity material as the dispersed phase, and below

by the EMT equation; and that the effective thermal

conductivity of external porosity materials is

bounded above by the EMT equation, and below

by the Maxwell–Eucken equation with the lower-

conductivity material as the continuous phase.

• The use of these equations as thermal conductivity
bounds was supported by experimental data from

the literature.

• The bounds support conclusions from previous stud-
ies that suggested there was inherently greater uncer-

tainty involved with predicting the effective thermal

conductivity of external porosity materials than there

is with internal porosity materials.
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